Coastal Management

Mapping of littoral cells

J M Motyka
Dr A H Brampton

Report SR 328
January 1993
Contract

This report describes work commissioned by the Ministry of Agriculture, Fisheries and Food under Contract CSA 2167 for which the MAFF nominated Project Officer was Mr B D Richardson. It is published on behalf of the Ministry of Agriculture, Fisheries and Food but any opinions expressed in this report are not necessarily those of the funding Ministry. The HR job number was CBS 0012. The work was carried out by and the report written by Mr J M Motyka and Dr A H Brampton. Dr A H Brampton was the Project Manager.

Prepared by

Name

Author

Job title

Approved by

Signature

Section Manager

Date

23rd January 1993

© Copyright Ministry of Agriculture, Fisheries and Food 1993
Summary

Coastal Management
Mapping of littoral cells

J M Motyka
Dr A H Brampton

Report SR 328
January 1993

As a guide for coastal managers a study has been carried out identifying the major regional littoral drift cells in England and Wales. For coastal defence management the regional cells have been further subdivided into sub-cells which are either independent or only weakly dependent upon each other. The coastal regime within each cell has been described and this together with the maps of the coastline identify the special characteristics of each area.

The study was funded by the Ministry of Agriculture, Fisheries and Food during the period 1992-1993. Any queries or comments on the contents of this report should be addressed to Mr J M Motyka or Dr A H Brampton of the Coastal Group at HR Wallingford.
Contents

Title page
Contract
Summary
Contents

1 Introduction .. 1
 1.1 Terms of reference ... 1
 1.2 Sources of data ... 1
 1.3 Outline of report ... 1

2 The concept of coastal cells 1

3 Coastline division into sub-cells 5
 3.1 General ... 5
 3.2 Description of sub-cells 6

4 Acknowledgements ... 102

5 Reference ... 102

Figure
 Figure 1 Boundaries of major cells 4

Table
 Table 1 Description of cell boundaries
1 Introduction

1.1 Terms of reference
The objectives of this MAFF research contract are:

- To produce a set of maps covering the coastline of England and Wales, identifying the boundaries of major littoral drift cells. These cells are to be categorised into totally independent, partly dependent cells and cells which vary in time with regard to drift direction changes. Stretches of coastline which have many small independent cells (i.e. rocky, strongly embayed stretches of cliffed coast) are also to be identified.

- These maps are to show the nett drift directions and to categorise stretches of the coastline into ones having a low, medium or high rate of littoral drift.

- Particular problem areas (e.g. areas of rapid erosion, accretion) are also to be identified within each coastal cell.

1.2 Sources of data
The study has been carried out using previous reports produced by HR Wallingford and much useful information has also been obtained from site inspections carried out during specific coastal studies by members of HR staff.

1.3 Outline of report
Following this introductory chapter there is a discussion of the concept of coastal cells and of the criteria by which the cell boundaries have been identified. This discussion forms Chapter 2 of the report. The main body of the report, giving a brief description of each coastal cell, forms Chapter 3. This consists of a page of text for each cell accompanied by a corresponding map showing littoral drift directions, littoral drift divides and sediment sinks. There is also a table showing the various cell boundaries at the end of the report.

2 The concept of coastal cells
The importance of interruption of longshore sediment transport can be gauged by the following quotation from an eminent coastal engineer in the USA. Galvin (1990) stated that "... all examples of shore erosion on non subsiding sandy coasts are traceable to manmade or natural interruptions of longshore sediment transport."
This is a rather sweeping statement and doubtless over-states the case in some circumstances. Nevertheless, a strategy for managing, and where appropriate, defending the coastline of the UK, should certainly reflect the importance of sediment transport along the beaches and nearshore seabed. This leads naturally to the concept of "coastal cells", that is to say a division of the coastline into sections within which any changes do not affect adjacent sections, or which have a significantly different character to those adjacent sections (e.g. in terms of geology or biology).

In the present context, the appropriate definition of a "cell" is based on the idea that interruptions to the movement of sand or shingle along the beaches or near shore sea bed within one cell should not significantly affect beaches in an adjacent cell. It should be stressed that the movement of fine grained material, that is, the type of material which does not normally settle out on the beach face has not been used to evaluate coastal cell boundaries.

In defining boundaries we have avoided identifying small coastal cells; along the Atlantic coasts of the UK there are a large number of small bays which satisfy the requirements of a "cell", but do not merit individual identification in the context of a strategic approach to coastal management. The smallest "cell" identified here is about 20km long (measured along the coast).

Boundaries between sediment cells are of two main types, namely: Littoral drift divides and Sediment sinks, defined as follows.

Littoral drift divides

Littoral drift divides usually occur at a point where the orientation of the coast changes abruptly - for example at a rocky headland such as Portland Bill in Dorset. If beach material moves away from such a point, on both sides, then that point is a drift divide. Interfering with the movement of beach sediment on one side of a drift divide will not cause problems on the other.

Sometimes drift divides occur without any dramatic change in the orientation of the coast; there is a drift divide near Sheringham in Norfolk, for example. In this case the position of the drift divide tends to shift from time to time, due to relatively small changes in wave conditions.

There is an obvious tendency for beach erosion near to a drift divide because any mobile sediment will tend to move away from that point.
Sediment Sinks

Here, the opposite situation applies. Sediment sinks are points at which sediment transport paths meet - so that beach material tends to build up. This happens naturally in well sheltered areas such as deeply indented bays. Sediment sinks are also often located in tidal inlets and estuaries. Again, any interference on one side of a sediment sink will not normally affect sediment movements on the other.

Tidal flows, in the vicinity of an estuary, for example, complicate the movement of beach sediment. To cross the mouth of an estuary, sediment may have to travel in and out of the estuary several times and the path may be tortuous as the ebb and flood flows may be concentrated in different channels. It is also quite common to find that the beaches downdrift of an estuary have a "reverse" drift, that is to say opposite to the general direction of longshore transport for that coast.

Bearing the above descriptions of cell boundaries in mind, the coast of England and Wales has been divided into 11 main "cells", as shown in Figure 1 overleaf. Four of the boundaries are in large estuaries (Wash, Thames, Severn, and the Solway), the remaining eight at major headlands (St Abb's Head, Flamborough Head, Selsey Bill, Portland Bill, Land's End, St David's Head, Bardsey and the Great Orme). These major cells not only reflect beach sediment units, but also divide the coast into regions where the geology and general orientation are similar.

For the purposes of coastal defence management, however, these major cells may be rather large, and contain too many local authorities for a single group to manage. Within these major cells, therefore, a number of "sub-cells" have been defined, and the description of the coast in this report is arranged using these smaller units. At many sites, the sediment transport around a headland or a large harbour only moves in one direction, and is often of small volume. Engineering works on the updrift side of such a feature may therefore have some impact on the downdrift coast, but such impacts may be small or totally insignificant. We can regard such sub-cells as being "partly dependent", with the understanding that the cell boundary between them is not totally "sediment-tight".

The definitions of cells and sub-cells in this report are thus derived from the viewpoint of movement of sand and shingle along the beaches, and taking into account the likely consequences of interfering with that movement. As a result, some of the boundaries may split an estuary into two parts. Had the main concern been a division of the coastline into similar units from the viewpoint of biological interest, or even the movement of mud, then such a division would clearly be wrong. Indeed it should be stressed that if estuarine processes are being evaluated then these processes are likely to be affected by coastal works on opposite shores of the estuary. There is clearly no universally applicable division of the coastline into management units. Different boundaries will be needed for different interest groups. The division which is presented in this report is thus strictly applicable for the purposes of coastal defence management on non cohesive beaches.
Figure 1 Boundaries of Major Cells
3 Coastline division into sub-cells

3.1 General
A full list of cell and sub-cell boundaries can be found in Table 1. The limits of these sub-cells are also shown on the maps which accompany the text. A description of the boundary conditions (e.g. sediment transport divide, sediment sink, one way boundary) and with arrows showing the net direction of littoral drift is shown on these maps.

The description of the coastal regime is given in the following Section 3.2 under 8 headings.

The heading "Coastal Authorities" lists the district and county councils covered by the sub-cell and the relevant region of the National Rivers Authority. There are, of course, many other organisations with coast protection interests (private landowners, harbour authorities etc.) which may be involved in the management of coastal defences, but which for the sake of brevity have been excluded from the list.

Under the heading "Erosion" we have identified areas where there is known to be significant beach or cliff erosion. Where this erosion provides an important supply of material to the adjacent beaches, this has been noted.

Under the heading "Accretion" we have identified major sediment "sinks" and where we have local information we have also included areas of natural accretion. With the proliferation of coastal defences, particularly on the southeast coast of England, there is little to be gained by identifying accreting areas within groyne systems, as the condition of such areas is likely to vary with the state of repair of such coastal defences. No attempt has therefore been made to identify presently accreting groyne systems, or beaches which have accreted as a result of artificial nourishment.

Under "Areas of Flood Risk" we have identified stretches of coast where a combination of waves and high tidal levels could cause inundation from the seaward. We have excluded, however, areas where high tidal levels and high fresh water flows can cause rivers to burst or overflow their banks, but where wave action is insignificant.

Under the heading "Littoral Processes" we have highlighted the most important mechanisms affecting the coastal regime. In particular we have identified those beaches where wave action is dominant and where a knowledge of tidal current behaviour is unlikely to significantly effect the design of coastal defence works (e.g. groynes and sea walls). We have also identified those stretches of coastline where tidal currents or tidal current residuals strongly affect beach
processes. It can be assumed that where both wave and tidal current processes are identified as being of importance, then major coastal impact studies would be needed in the design of coastal defence works. Finally, a number of areas which are important sources of beach material, by virtue of their erosion, have been identified. We have also given a qualitative assessment of the nett rate of littoral drift of sand or shingle. In general it can be assumed that where a moderate rate of drift is indicated then this is of the order of 10,000 cubic metres per year for shingle and 100,000 cubic metres per year for sand. Where a low rate of drift is indicated this may be as small as 1000 cubic metres per year for shingle and where a high rate of drift is given this may be assumed to be as high as 500,000 cubic metres per year for sand. In general however most beaches which are groyned fall in the "central" category.

3.2 Description of sub-cells
The following description of the sub-cells covers the coastline of England and Wales from St Abb's Head to the Solway Firth. This description should be read in conjunction with Table 1 and with the maps opposite each sub-cell description, in which cell boundaries, littoral drift directions, etc. are shown.
Legend for the following maps

These maps show the coastline in sub-cell sections extending from St Abb's Head clockwise around the coastline of England and Wales to the Solway Firth.

- Cell or sub-cell boundary.
- Drift divide. Boundary for regional cell.
- Sediment sink. Boundary for regional cell.
- Partial or "one way drift". Boundary for sub-cell in some instances.
- Nett drift direction.
- Variable nett drift direction

NB Where there are no arrows, drift is insignificant.
Sub-cell 1a St. Abb's Head to The Tyne
<table>
<thead>
<tr>
<th>CELL 1</th>
<th>St Abb's Head to Flamborough Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB-CELL 1a</td>
<td>St Abb's Head to The Tyne</td>
</tr>
</tbody>
</table>

COASTAL AUTHORITIES

- **District Councils:** Berwick on Tweed, Alnwick, Castle Morpeth, Wansbeck, Blyth Valley, North Tyneside
- **County Councils:** Borders Region (S), Northumberland, Tyne and Wear
- **NRA Regions:** Northumbrian

GENERAL

Coast largely undeveloped from St Abb's to Lynemouth, principal towns being Eyemouth, Berwick, Alnmouth and Amble. Heavy development at Newbiggin, Blyth and almost continuously from Seaton Sluice to the Tyne.

BEACHES

Rock platforms south to Berwick. Extensive sand beaches fringed by reefs and backed by low cliffs/dunes south to Seaton Sluice. Sand beaches broken by rock reefs south to the Tyne.

BACKSHORE

Sandstone and limestone cliffs to Berwick. Low limestone cliffs with many igneous intrusions south to Alnmouth. Shales and sandstones with thick cover of boulder clay form headlands and cliffs south to the Tyne.

EROSION

Beach/cliff erosion at Newbiggin and Blyth. Beach despoliation due to erosion of colliery waste from Lynemouth Bay and Cambois. Seabed instability due to mining e.g. Newbiggin. Clay cliffs prone to erosion from Seaton Sluice to the Tyne.

ACCRETION

Sand/silt accretion at Holy Island.

AREAS OF FLOOD RISK

Flood banks near Holy Island.

LITTORAL PROCESSES

Littoral drift is low and intermittent. Sand transport interrupted by rock reefs and headlands. Only a weak dependency between adjacent sand bays. Wave action produces strong seasonal onshore/offshore sand movement. Dunes provide a landward reservoir of beach material. Tidal currents have a southerly residual and reinforce southerly sand transport on the beach and nearshore sea bed.
CELL 1
St. Abb's Head to Flamborough Head

SUB-CELL 1b
The Tyne to Seaham Harbour

COASTAL AUTHORITIES

District Councils: South Tyneside, Sunderland, Easington
County Councils: Tyne and Wear, Durham
NRA Regions: Northumbrian

GENERAL
Partly developed, cliffed coast. Can be treated as one unit for planning purposes, but actually forms two cells, The Tyne to Sunderland, Sunderland to Seaham.

BEACHES
Sand at South Shields and Whitburn. Sand and pebbles (the latter from cliff erosion) from Sunderland to Seaham.

BACKSHORE
Magnesian limestone cliffs with heavy overburden of boulder clay which increases in thickness southwards.

EROSION
Localised sand dune erosion at South Shields. Cliff erosion widespread from South Shields to Seaham.

ACCRETION
Accretion of cliff derived pebbles between Sunderland and Seaham.

AREAS OF FLOOD RISK
None.

LITTORAL PROCESSES
Low and intermittent southward drift, with beaches divided by rock headlands and harbour arms. Weak dependency between adjacent beaches. However eroding cliffs provide beach building material, particularly to the south of Sunderland. Wave action produces strong seasonal onshore/offshore sand movement. Tidal currents have a southerly residual and reinforce the southward transport on the lower beach and on the nearshore sea bed.
CELL 1
St Abb's Head to Flamborough Head

SUB-CELL 1c
Seaham Harbour to Saltburn

COASTAL AUTHORITIES

District Councils: Easington, Hartlepool, Langbaurlagh on Tees
County Councils: Durham, Cleveland
NRA Regions: Northumbrian

GENERAL
Cliffed coastline is largely undeveloped but both cliffs and beaches marred by colliery workings from Seaham to Blackhall. Major urban and industrial development in Hartlepool and Tees bays.

BEACHES
Sand beaches contain a high proportion of shales, limestones and coal particles, between Seaham and Crimdon. Sand beaches from Crimdon to Saltburn.

BACKSHORE
Magnesian limestone cliffs with heavy overburden of boulder clay from Seaham to Crimdon. Sand dunes to Hartlepool. Low lying land to Redcar. Low shale/clay cliffs to Saltburn.

EROSION
Disintegration of colliery spoil causing beach retreat between Seaham and Blackhall Rocks. Dune erosion from Crimdon Park to Northsands, Hartlepool. Beach erosion in Tees and Hartlepool bays (seasonal).

ACCRETION
Sand accretion at the mouth of the Tees.

AREAS OF FLOOD RISK
Potential flood problems at Carr House Sands, in Hartlepool Bay.

LITTORAL PROCESSES
Moderate southward drift (Shale transport high). Wave action produces seasonal onshore/offshore sand movement and a southerly transport of beach material. Beaches extend beyond the natural coastline due to large scale colliery waste disposal. Cliffs therefore only partly interrupt drift. Tidal currents have a southerly residual and reinforce the southward transport of sand and colliery waste on the lower beach and on the nearshore sea bed. Heavily polluted beaches erode due to natural disintegration of waste. Only short stretches of cliff subject to erosion, hence provide only a limited supply of beach building material. Strong dependence between adjoining coasts and coastal works likely to have a strong knock-on effect downdrift.
CELL 1

St Abb's Head to Flamborough Head

SUB-CELL 1d

Saltburn to Flamborough Head

COASTAL AUTHORITIES

District Councils: Langbaurgh on Tees, Scarborough, East Yorkshire

County Councils: Cleveland, North Yorkshire, Humberside

NRA Regions: Yorkshire

GENERAL

Generally unspoilt, cliffed coastline with major population centres only at Whitby, Scarborough and Filey.

BEACHES

Sandy bays formed generally where the boulder clay outcrops at sea level. Otherwise the foreshore at foot of cliffs is rocky with little beach material.

BACKSHORE

Shale/clay cliffs with overburden of boulder clay over virtually the whole length, but with chalk cliffs at Flamborough Head.

EROSION

Cliff erosion along most of the coastline. Cliff instability, weathering and toe scour occur in most of the bays e.g Runswick, Whitby, Robin Hood’s Bay, Scarborough and Filey.

ACCRETION

Not known if any significant accretion is taking place.

AREAS OF FLOOD RISK

No known areas at risk.

LITTORAL PROCESSES

Littoral drift is low and intermittent. Wave action produces seasonal onshore/offshore movement but material is generally retained within bays which are strongly indented. Tidal currents dominate the southward transport of material in the nearshore zone. Erosion of cliffs provides an important supply of sand in bays. A large amount of fines is also transported offshore and then southwards by currents. There would appear to be little interaction between embayments because of the isolated nature of the beaches.
CELL 2
Flamborough Head to The Wash

SUB-CELL 2a
Flamborough Head to Sunk Island

COASTAL AUTHORITIES

District Councils: East Yorkshire, Holderness
County Councils: Humberside
NRA Regions: Yorkshire

GENERAL
Undeveloped, largely agricultural coastline with urban centres at Bridlington, Hornsea and Withernsea. There are also several clifftop villages which are at risk from cliff retreat (e.g. Barmston, Skipsea, Atwick, Mappleton and Kilnsea). The north shore of the Humber could be treated as a sub-cell. It is included within this cell due to its dependence on the shelter of Spurn Head.

BEACHES
Thin veneer of sand, patches of pebbles over clay substratum. Mud flats on the north shore of the Humber.

BACKSHORE
Chalk cliffs at Flamborough Head. Boulder clay cliffs to Spurn Head, which are subject to weathering and rapid cliff toe erosion. Extensive saltmarshes on the north shore of the Humber.

EROSION
Rapid and persistent cliff and beach erosion over the whole frontage from Bridlington to Spurn Head. Long term retreat causing serious loss of agricultural land. Hornsea and Withernsea are becoming "isolated" by coastal recession and will therefore be at increasing risk of beach erosion.

ACCRETION
Salt marsh accretion on the north shore of the Humber.

AREAS OF FLOOD RISK
Minor flood risk at Barmston, Easington and Kilnsea.

LITTORAL PROCESSES
High southward drift on the open coast. Little nett drift on the north shore of the Humber. Waves in combination with tidal currents transport material derived from cliff erosion seawards and southwards. Deficit of material and coastal retreat causing a permanent lowering of clay substratum and persistent beach erosion. Where stretches of coast are defended there are serious downdrift erosion problems, including accelerated cliff retreat.

Erosion provides a feed of sand to the Lincolnshire coast.
Sub-cell 2b Immingham to Donna Nook
CELL 2
Flamborough Head to The Wash

SUB-CELL 2b
Immingham to Donna Nook

COASTAL AUTHORITIES
District Councils: Cleethorpes, East Lindsey
County Councils: Humberside, Lincolnshire
NRA Regions: Anglian

GENERAL
Low lying, partly industrial land on the south shore of the Humber.

BEACHES
Mud and sand on the south shore of the Humber east to Grimsby, gives way to sand at Cleethorpes and wide sands backed by salt marshes towards Donna Nook.

BACKSHORE
Low lying marshland.

EROSION
Minor local dune erosion south of Cleethorpes.

ACCRETION
Extensive sand accretion and salt marshes at Donna Nook.

AREAS OF FLOOD RISK
Immingham to Donna Nook.

LITTORAL PROCESSES
Low littoral drift of sand into Humber estuary from Donna Nook. Waves and tidal currents supply and redistribute material from the coast north of the Humber across the Humber estuary to Lincolnshire. The accretion of sand at Donna Nook and the adjacent sea bed provide a source of sand to the Lincolnshire coast. There are no coastal works in this area which affect this process significantly.
CELL 2

Flamborough Head to The Wash

SUB-CELL 2c

Donna Nook to Gibraltar Point

COASTAL AUTHORITIES

District Councils: East Lindsey

County Councils: Lincolnshire

NRA Regions: Anglian

GENERAL

Lightly developed low lying land susceptible to both flooding and erosion. Hard defences (e.g. seawalls) concentrated from Mablethorpe to Skegness.

BEACHES

Wide sand beach from Donna Nook to Mablethorpe. From here to Skegness, beach becomes less healthy and very narrow in places.

BACKSHORE

Extremely low lying land. Marshes at Donna Nook give way to sand dunes from Theddlethorpe south to Mablethorpe. Sea bank separates land from sea from Mablethorpe south to Skegness. Sand dunes in front of salt marsh from Skegness south to Gibraltar Point.

EROSION

Sand beaches underlain by clay substratum. Erosion of this causing beach steepening from Mablethorpe to Skegness.

ACCRETION

Wide accreting sand flats at Donna Nook. Seaward extension of sand beach and dune build up south of Skegness.

AREAS OF FLOOD RISK

Whole frontage prone to flooding.

LITTORAL PROCESSES

Moderate southward littoral drift of sand. Wave action is working on an easily erodible low lying coast. Deficit of supply and erosion of clay substrate lead to beach lowering and steepening. Some feed to the coast believed to be taking place via flood dominant currents from the offshore banks northeast of Skegness. Tidal flows in and out of the Humber and the Wash modify sediment processes at either end of the coast.
CELL 2 Flamborough Head to The Wash
SUB-CELL 2d Gibraltar Point to Snettisham

COASTAL AUTHORITIES
District Councils: East Lindsey, Boston, South Holland, King’s Lynn and West Norfolk
County Councils: Lincolnshire, Norfolk
NRA Regions: Anglian

GENERAL Low lying undeveloped land reclaimed from the sea, fronted by saltmarshes.
BEACHES Saltmarsh fronted by sand and mudflats.
BACKSHORE Flood bank with low lying agricultural land to the landward (protected by 2nd and 3rd line banks).
EROSION No significant areas of erosion.
ACCRETION Siltation by current borne sediments is enhanced by alluvial deposits discharged by rivers. Saltmarsh colonisation in progress.
AREAS OF FLOOD RISK The whole coastal frontage is low lying. At risk from extreme high tides between Gibraltar Point and Frampton.
LITTORAL PROCESSES No significant drift, fine sands and silts being brought in predominantly by tidal action. Tidal currents distribute fine sediments and provide impetus for salt marsh development, particularly on west and south margins of the Wash.
CELL 3
SUB-CELL 3a

The Wash to The Thames
Snettisham to Sheringham

COASTAL AUTHORITIES

District Councils: King’s Lynn and West Norfolk, North Norfolk
County Councils: Norfolk
NRA Regions: Anglian

GENERAL
Low lying land which is undeveloped, with the exception of Heacham to Hunstanton to the west and Sheringham to the east. Large areas reclaimed in past centuries.

BEACHES
Mainly sand but with discontinuous shingle spits from Scolt Head Island to Weybourne.

BACKSHORE
Predominantly low lying marshland but with sand dunes between Hunstanton and Holme; also at Brancaster and Wells. Chalk cliffs at Hunstanton. Shingle bank from Cley to Weybourne. Sand/clay cliffs from Weybourne to Sheringham.

EROSION
Sand dunes suffer seasonal erosion between Hunstanton and Holme. Some evidence of landward retreat of shingle ridges, particularly from Cley to Weybourne. Continuous erosion of soft sand/clay cliffs east of Weybourne.

ACCRETION
A generally accretionary coastline between Hunstanton and Blakeney with salt marsh developing in the lee of shingle spits.

AREAS OF FLOOD RISK
Coastline from Snettisham to Hunstanton has floodbanks/seawalls. Natural coastline from Hunstanton to Weybourne. Floodbanks generally on old coastline from Hunstanton to Cley. Natural shingle banks, sand dunes and spits form the front line of defence against the sea from Hunstanton to Weybourne Gap.

LITTORAL PROCESSES
Moderate rate of westward drift from Sheringham to Hunstanton, then reducing to near zero at Snettisham. A predominantly accretionary coastline with an offshore supply of sand and silt, together with a supply of pebbles from the east. Both waves and currents are important in present day processes. Waves dominate coastal processes east of Blakeney. From here to Snettisham, tidal flows become increasingly important, particularly on the lower part of the foreshore.
CELL 3
SUB-CELL 3b
COASTAL AUTHORITIES
District Councils: North Norfolk, Great Yarmouth, Waveney
County Councils: Norfolk, Suffolk
NRA Regions: Anglian
GENERAL
A vulnerable coastline with many towns and villages spread along a frontage of sand/clay cliffs or sand dunes.

BEACHES
Predominantly sand with areas of pebbles derived from cliff erosion.

BACKSHORE
Sand/clay cliffs interspersed by lower lying land, fronted in most places by sand dunes and hard defences.

EROSION
Fairly rapid and widespread cliff erosion while sand dune areas and nesses are also liable to fluctuate. Considerable erosion over past 1000 years indicated by 'lost' villages.

ACCRETION
Nesses are accretionary points, but they may migrate in an alongshore direction, or may in some instances lack a contemporary supply.

AREAS OF FLOOD RISK
Much of the frontage between Happisburgh and Winterton is at risk. This length of coast also protects Broadland from direct flooding from the North Sea.

LITTORAL PROCESSES
High drift rate to east and south. Both waves and tidal currents play an important role in fashioning the coast. Waves transport material southwards from eroding cliffs, providing a vital source of supply for downdrift beaches. Residual tidal currents form a link between the movements of the nearshore system of sand banks and beach changes. Impact of major works is likely to be widespread and to a large extent unpredictable. Major coastal works north of Lowestoft could have an impact to the south, in which case the frontage from Sheringham to Harwich (sub-cells 3b and 3c) may in some instances need to be treated as an interdependent unit. Coastal works to the south of Lowestoft are not likely to have a significant impact on the coast to the north, unless they are on such a scale as to impact on the nearshore sand bank behaviour.
CELL 3

The Wash to The Thames

SUB-CELL 3c

Lowestoft to Harwich

COASTAL

Authorities

District Councils: Waveney, Suffolk Coastal, Babergh

County Councils: Suffolk

NRA Regions: Anglian

GENERAL

A vulnerable coastline with many towns and villages situated on glacial cliffs or on low lying land fronted by shingle ridges.

BEACHES

Sandy beach at Lowestoft. Sand and shingle beaches south to Landguard Point.

BACKSHORE

Low glacial cliffs with intervening low ground separated from the sea by substantial shingle ridges.

EROSION

Cliff erosion at Covehithe, Easton Bavents and Dunwich. Erosion of beach south of Aldeburgh. Coastal slope instability from Bawdsey to Felixstowe. Beach erosion from Felixstowe to Landguard Point.

ACCRETION

Local accretion at Benacre Ness and from Thorpeness to Aldeburgh

AREAS OF FLOOD RISK

Flood risk widespread. From Walberswick south, shingle storm beaches form the line of defence as far south as Orford Haven. Low lying areas of Felixstowe at risk.

LITTORAL PROCESSES

Littoral drift is southward with a high sand transport and a moderate shingle transport. Both waves and tidal currents play an important role in fashioning the coast. Waves transport material southwards from eroding cliffs providing an important supply for downdrift beaches. Offshore banks are tidally formed - processes are complicated by tidal flows at mouths of the Deben, and Orwell/Stour Estuaries. Residual currents form a link between the movements of the nearshore system of sand banks and beach changes. Impact of major works is likely to be widespread. Coastal works north of Lowestoft (Cell 3b) may have an impact on this frontage.
CELL 3
SUB-CELL 3d

COASTAL AUTHORITIES

District Councils: Tendring, Colchester, Maldon, Rochford, Southend on Sea, Castle Point
County Councils: Essex
NRA Regions: Anglian

GENERAL
Low lying "soft" coastline has extensive frontages protected by flood banks within creeks and around islands. The coast is inaccessible and undeveloped except for the Tendring Peninsula (e.g. Clacton frontage). Little interaction between frontages separated by rivers, creeks etc.

BEACHES
Beaches have a thin veneer of sand from Harwich to River Blackwater. To the south there is a wide intertidal zone of sands, silts and muds with saltmarsh to landward.

BACKSHORE
Predominantly marshland or low lying agricultural land but with clay cliffs at Walton on the Naze, Frinton and Clacton on Sea.

EROSION
Cliff erosion at Walton on the Naze. Thin sand cover makes beaches susceptible to erosion between the Naze and Colne Point. General decline of saltmarshes in Hamford Water and south of river Blackwater.

ACCRETION
Maplin Sands and other intertidal banks probably accreting.

AREAS OF FLOOD RISK
Much of the coastline is at risk, especially as many of the flood banks are in a poor state of repair and are vulnerable to breaching/flooding. Canvey Island which is heavily populated and which has high value industrial development to the south, is protected by substantial flood defences, but is at potential risk during high surges.

LITTORAL PROCESSES
Moderate southward drift from the Naze to Colne Point. Low southward rate of drift south to the Thames. Erosion of the soft coast produces little beach building material. Estuary mouths break up the coast into many, almost self-contained, frontages. The decline of beaches between Walton and Jaywick can be attributed to the lack of supply from the north (sand and shingle from the north shore of the Orwell/Stour appears to be swept seawards into the approaches to Harwich Harbour). Tidal currents appear to be dispersing silts and muds seawards after erosive events.
CELL 4
SUB-CELL 4a
COASTAL AUTHORITIES

District Councils: Rochester upon Medway, Swale, Canterbury, Thanet
County Councils: Kent
NRA Regions: Southern

GENERAL
Predominantly low lying coast with clay cliffs to west and chalk cliffs to east. Urban frontages separated by stretches of low lying agricultural land.

BEACHES
Extensive mud flats with sand or shingle upper beaches. Chalk reefs outcrop on Isle of Thanet.

BACKSHORE
Boulder clay cliffs and areas of saltmarsh/reclaimed land from Isle of Sheppey to Isle of Thanet. Chalk cliffs on the Isle of Thanet.

EROSION
Cliff slippage at Isle of Grain and Isle of Sheppey and at east end of Herne Bay. Inadequate supply of sand and shingle causes widespread beach erosion.

ACCRETION
No significant beach build up.

AREAS OF FLOOD RISK
Low lying parts of coastline protected in places by old flood banks. Flood risk is widespread from the Isle of Grain to Thanet.

LITTORAL PROCESSES
Wave induced erosion is widespread. Moderate, but strongly unidirectional, westward drift which rapidly diminishes in strength west of Whitstable. The demand for shingle exceeds supply. Coastal defences likely to have a 'knock-on' effect from Thanet to Whitstable. Shingle nourishment is used to make up deficit. Onshore sand supply (via tidal currents) from Sandwich Bay to Thanet is inadequate for present day needs.
CELL 4
The Thames to Selsey Bill

SUB-CELL 4b
North Foreland to Dover Harbour

COASTAL AUTHORITIES

District Councils: Thanet, Dover
County Councils: Kent
NRA Regions: Southern

GENERAL
Urban cliffed coast on Isle of Thanet. Relatively undeveloped low lying coast in Pegwell Bay. Undeveloped cliffed coast to Dover and beyond.

BEACHES
Thin sand cover over chalk on Isle of Thanet. Sand/mudflats in Pegwell Bay. Sand and increasing quantities of shingle from river Stour to Kingsdown.

BACKSHORE
Chalk cliffs, except in Sandwich Bay where backshore is saltmarsh and sand dunes.

EROSION
Chalk cliff recession at a slow rate in Thanet. Shingle ridge recession between Deal and Kingsdown.

ACCRETION
Sand and silt build up on the intertidal flats in Pegwell Bay.

AREAS OF FLOOD RISK
No known areas of serious flood risk.

LITTORAL PROCESSES
Generally low southward drift rate in Thanet due to rock headlands interrupting drift. Moderate northward shingle transport between Kingsdown and entrance to Stour. No perceivable transport around South Foreland but there is a potential eastward drift from Dover to Kingsdown. Wave induced "unidirectional drift" results in coastal defences having a significant knock-on effect between Kingsdown and Pegwell Bay. Tidal currents bring in sand and silt as suspended load into Pegwell Bay. Tidal currents also transport sand in small quantities across Sandwich Bay to North Foreland.
CELL 4
The Thames to Selsey Bill

SUB-CELL 4c
Dover Harbour to Beachy Head

COASTAL AUTHORITIES

District Councils:
Dover, Shepway, Rother, Hastings, Wealden, Eastbourne

County Councils:
Kent, East Sussex

NRA Regions:
Southern

GENERAL
Heavily developed frontages contrasting with long frontages of marshland or low lying agricultural land.

BEACHES
Shingle beaches overlying wide sand lower foreshores.

BACKSHORE
Chalk/gault clay cliffs giving way to sands and clays from Dover to Sandgate. Low lying land to near Hastings. Sandstone cliffs to Bexhill. Low lying land to Eastbourne, terminating at the chalk promontory of Beachy Head.

EROSION
Erosion prevalent over the major part of the frontage with coastal defences/harbour works having a knock-on effect on the littoral drift.

ACCRETION
Natural shingle accretionary features at Dungeness and at Crumbles (between Eastbourne and Pevensey). Localised accretion wherever drift is interrupted by harbour arms.

AREAS OF FLOOD RISK
Much of the low lying coast at risk (Sandgate to Littlestone, Rye Bay and Pevensey Bay being risk areas).

LITTORAL PROCESSES
Moderate eastward transport of sand and shingle by predominant south-westerly waves, with local reversal on the east face of Dungeness foreland. Coastal defences and harbours have a widespread 'knock-on' effect. As a result of offshore losses at Dungeness the coastline to east is suffering from a deficit of beach material supply.

This is a very large subcell because of the continuity of shingle drift and consequent widespread 'knock-on' effect of coastal works.
CELL 4	The Thames to Selsey Bill
SUB-CELL 4d	Beachy Head to Selsey Bill
COASTAL AUTHORITIES	
District Councils:	Eastbourne, Wealden, Lewes, Brighton, Hove, Adur, Worthing, Arun, Chichester
County Councils:	East Sussex, West Sussex
NRA Regions:	Southern
GENERAL	Heavily developed stretch of coastline and one requiring very heavy expenditure on coast protection. Continuity of shingle drift and knock-on effect of coastal works make it necessary to treat this long frontage as one sub-cell.
BEACHES	Predominantly shingle storm ridges on sands, overlying chalk to the east and boulder clay to the west.
BACKSHORE	Chalk cliffs from Beachy Head to Brighton. Low lying land to Selsey Bill, where low sand/clay cliffs form the Bill.
EROSION	Erosion of shingle beaches very widespread. Losses made up in some areas by artificial nourishment.
ACCRETION	Localised accretion wherever drift is interrupted by harbour arms and at river mouths (e.g. Cuckmere and Ouse). Significant accretion at Pagham Harbour entrance.
AREAS OF FLOOD RISK	Widespread. Low lying land in Seaford Bay was prone to flooding prior to artificial beach nourishment. Main areas of flood risk are frontages between Shoreham and Bognor Regis.
LITTORAL PROCESSES	Moderate eastward transport of sand and shingle by predominant south-westerly waves is interrupted by a number of harbours. Coastal defences and harbours have a widespread 'knock-on' effect. Very little present day supply from coast erosion due to proliferation of defences. Supply of shingle from Selsey Bill now considerably reduced as a result of protection of cliffs at the Bill. However, there is believed to be onshore shingle movement from the nearshore banks off the Bill. The feed is variable and occurs in pulses, by wave action from the south. Kelp rafted transport of shingle can also occur over the frontage between Brighton and Pagham. The supply is very small but may constitute the only natural present day source.
CELL 5
Selsey Bill to Portland Bill

SUB-CELL 5a
Selsey Bill to Portsmouth Harbour

COASTAL AUTHORITIES

District Councils: Chichester, Havant, Portsmouth

County Councils: West Sussex, Hampshire

NRA Regions: Southern

GENERAL

The urban centres along this frontage, (e.g. Bracklesham, East Wittering, Hayling and Portsmouth) are all on low lying land. Selsey Bill is on higher ground. The coast is an eroding one and coast protection works have a knock on effect.

BEACHES

Shingle storm ridges over sand lower foreshores.

BACKSHORE

Predominantly low lying land or marshland. Sand/clay cliffs over short frontage at Selsey Bill.

EROSION

Beach erosion prevalent as this is a "soft" coastline.

ACCRETION

East Head at west end of Selsey peninsula. Gunner Point at west end of Hayling Island. Eastney at east end of Portsea Island.

AREAS OF FLOOD RISK

Bracklesham Bay. East end of Hayling Island. Coast road between Southsea and Eastney (Portsea Island).

LITTORAL PROCESSES

A moderate westward drift due to southerly and easterly waves (predominant southwesterly waves diffracted towards north by the Isle of Wight). Rate of drift in recent years has been considerably reduced due to coast protection works and the diminution of beach material supply has been causing erosion from Selsey to Hayling. The drift is intercepted by harbour mouths and beach material is transported offshore onto tidal deltas by rapid ebb currents. Some evidence of an onshore supply of material along this frontage but supply is very small compared with 'demand'.

Portsmouth Harbour entrance forms an effective boundary with little interaction between beaches to the west and those to the east.

Littoral processes complex but 'knock-on' effect of coastal works is clear from evidence of downdrift erosion problems.
CELL 5
SUB-CELL 5b
PORTSMOUTH HARBOUR TO SOUTHAMPTON (TOTTEN)

COASTAL AUTHORITIES

District Councils:
Gosport, Fareham, Eastleigh, Southampton

County Councils:
Hampshire

NRA Regions:
Southern

GENERAL

Coastline is generally low lying but with low pebble and sandy cliffs between Lee on Solent and Netley. Wave exposure is not severe and drift effects felt mainly southeast of the river Hamble.

BEACHES

Narrow sand or shingle beaches.

BACKSHORE

Sea walls protect most of the Gosport frontage. Shingle backshore extends west and north to Lee on Solent and beyond. Sandy cliffs north to Netley. Wharves protect Southampton frontage.

EROSION

Most of the east shore of Southampton Water prone to erosion by locally generated waves. Beach erosion at Lee on Solent. Downdrift erosion at Browndown (southeast of Lee on Solent).

ACCRETION

Local accretion at Hill Head. (Near mouth of river Meon). Shingle ridges are accretionary features southeast of Lee on Solent.

AREAS OF FLOOD RISK

North end of Lee on Solent. Mouth of the river Hamble. Netley to the river Itchen.

LITTORAL PROCESSES

Littoral drift is low. Locally generated wave action (in the Solent) is sufficiently strong to cause cliff erosion between the rivers Meon and Hamble and to transport material northwestwards or southeastwards from a ‘drift divide’ situated approximately centrally on this frontage (near Solent Breezes). While littoral drift is low it is fairly unidirectional and serious downdrift erosion occurs where this drift is interrupted (e.g. southeast of Lee on Solent). Tidal currents generally run parallel to the shore and prevent any significant onshore feed of material by wave action. Littoral processes are very weak northwest of the Hamble and beach behaviour is probably dominated by tidal current action.
CELL 5

Selsey Bill to Portland Bill

SUB-CELL 5c

Southampton (Totton) to Hurst Spit

COASTAL AUTHORITIES

District Councils: New Forest

County Councils: Hampshire

NRA Regions: Southern

GENERAL

Low lying land which is largely unprotected, but with urban and industrial development between Hythe and Fawley.

BEACHES

Predominantly intertidal mud flats in Southampton Water and in the West Solent from river Beaulieu to Hurst Spit. Narrow shingle beach extends into the mouth of river Beaulieu from the west and then continues on the east bank to Calshot Spit.

BACKSHORE

Salt marshes, and areas of reclaimed land protected by intermittent stretches of flood bank (between Lymington and Keyhaven).

EROSION

The coastline is a "soft" one and is therefore prone to erosion, particularly from Calshot Spit to Keyhaven.

ACCRETION

Local accretion of shingle in the lee of Hurst Spit.

AREAS OF FLOOD RISK

Much of the area at flood risk, particularly frontages in the West Solent. Industrial developments on west shore of Southampton Water protected by flood banks (eg. Fawley Power Station). However some 'rural' areas are flooded at high tide (eg. coast road east of Hythe).

LITTORAL PROCESSES

Littoral drift is low and eastwards on the north shore of the West Solent. No discernible drift on the west shore of Southampton Water. Tidal processes dominate in areas protected by mudflats (eg. on the west shore of Southampton Water and from just east of river Beaulieu to Hurst Spit). Locally generated waves produce a strongly unidirectional, if weak, littoral drift from east of Beaulieu river to Calshot Spit. There are extensive areas of intertidal erosion and saltmarsh die back which will probably make present levels of defence inadequate if erosion continues.
CELL 5
Selsey Bill to Portland Bill

SUB-CELL 5d
The Needles to Foreland (IOW north coast)

COASTAL AUTHORITIES

District Councils: South Wight, Medina
County Councils: Isle of Wight
NRA Regions: Southern

GENERAL
The coast is mainly undeveloped and relatively sheltered from wave action. Strong tidal currents play a role in the dispersion of fine sands and clays from areas of erosion.

BEACHES
Sand and pebble beaches on the west coast. Narrow pebble beaches over muddy foreshores on the north shore, bordering the Solent. Sand beaches on the east coast from Ryde to Foreland.

BACKSHORE
From the Needles to Cowes cliffs are predominantly sands and clays, prone to slippage. From Cowes to Ryde clay cliffs are less steep and fairly stable. Less stable cliffs of sands and clays overlying limestone extend from Seaview to Foreland.

EROSION
Erosion/cliff slippage affects much of the coast. The frontage worst affected is from Totland to Cowes and from Seaview to Foreland.

ACCRETION
Major zones of sand accretion at Ryde and Bembridge

AREAS OF FLOOD RISK
No known areas of serious flood risk.

LITTORAL PROCESSES
Low northward and eastward drift from Totland to Cowes. Very low eastward drift from Cowes to Ryde. Moderate northward drift from Foreland to Ryde. The dominant processes are wave action on the west and east coasts, and combined waves/tidal currents on north coast. There is little transport across the Medina (between East and West Cowes) so the northwest and northeast coasts can be treated independently for most purposes.

Sand accretion at Ryde and Bembridge must be derived from the southeast coast or from the Solent itself. (Cliff erosion between Totland and Yarmouth is probably barely sufficient to feed beaches locally).
CELL 5

Selsey Bill to Portland Bill

SUB-CELL 5e

Foreland to The Needles (IOW south coast)

COASTAL AUTHORITIES

District Councils: South Wight
County Councils: Isle of Wight
NRA Regions: Southern

GENERAL

The south coast has a severe wave exposure. Cliff erosion provides beach material (sand and fine shingle) for the southeast coast.

BEACHES

Sand and shingle beaches extend from the Needles to Ventnor. Beaches are predominantly sandy in Sandown Bay.

BACKSHORE

Chalk cliffs at the Needles. Rapidly eroding cliffs of sands, shales and clays extend east to St. Catherine’s Point. Terraced cliff slopes of chalk over clay extend to Dunnose. Chalk, clay and sandstone cliffs are found at Dunnose. Sandstone cliffs extend over Shanklin/Sandown frontage.

EROSION

Erosion and cliff slippage is prevalent around most of the coast.

ACCRETION

Sand and pebble accretion on the southwest coast due to cliff erosion. Pocket sand and pebble beaches between St. Catherine’s Point and Ventnor due to eastward drift. Sand accretion in Sandown Bay supplied by eastward drift and also from erosion of sandstone cliffs in the Bay, (prior to seawall construction).

AREAS OF FLOOD RISK

No known areas of serious flood risk.

LITTORAL PROCESSES

Moderate to high eastward drift from the Needles to St. Catherine’s Point, reducing slightly to the east. Northerly moderate rate in Sandown Bay. Any coastal protection works are likely to significantly affect the process of beach material redistribution. Cliff protection measures in Sandown Bay may well result in deteriorating beaches in the long term. The southwest coast is relatively undeveloped but coast protection works would have a serious ‘knock-on’ effect downdrift.
CELL 5

Selsey Bill to Portland Bill

SUB-CELL 5f

Hurst Spit to Durlston Head

COASTAL AUTHORITIES

District Councils: New Forest, Christchurch, Bournemouth, Poole, Purbeck

County Councils: Hampshire, Dorset

NRA Regions: Southern, Wessex

GENERAL

Easily erodible coastline of sand, clays, and gravels. Drift strongly unidirectional in Christchurch and Poole bays and coast protection works likely to have a "knock-on" effect downdrift.

BEACHES

Predominantly sand but with areas of shingle from cliff erosion (e.g. Christchurch Bay, east end of Poole Bay and north end of Swanage Bay).

BACKSHORE

Easily erodible/unstable cliffs of clays, sands and gravels. Areas of saltmarsh in Christchurch and Poole Harbours. Sand dunes in Studland Bay.

EROSION

Recession and breaching at Hurst Spit. Cliff slippage/erosion in the central part of Christchurch Bay, and at east end of Poole Bay. Cliff erosion in Swanage and Durlston Bays.

ACCRETION

Natural build up of shingle at Hordle in the eastern part of Christchurch Bay. Sand and shingle build up at Christchurch Harbour entrance and sand accretion in Poole Harbour entrance and Studland Bay.

AREAS OF FLOOD RISK

Christchurch Harbour.

LITTORAL PROCESSES

Moderate to high easterly drift of sand and shingle in Christchurch and Poole Bays. Little nett drift in Swanage Bay. Waves erode cliffs and transport material eastwards in Christchurch and Poole Bays. There is local drift reversal at the entrance to Poole Harbour. Tidal currents carry sand around Hengistbury Head, some of this being transported offshore and some reaching the Christchurch Bay frontage. Rapid tidal currents also transport shingle from off the end of Hurst Spit seawards onto offshore banks.

Coastal defences have a marked downdrift effect. Coastal works in Poole Bay affect the regime of Christchurch Bay, but not vice versa.
CELL 5 Selsey Bill to Portland Bill
SUB-CELL 5g Durlston Head to Portland Bill

COASTAL AUTHORITIES

District Councils: Purbeck, West Dorset, Weymouth and Portland
County Councils: Dorset
NRA Regions: Wessex

GENERAL Largely undeveloped cliffed coastline. Coast strongly indented and local coast protection works unlikely to have a serious ‘knock-on’ effect downdrift.

BEACHES Predominantly pebble beaches, fringed by rock reefs, from St. Alban’s Head to Weymouth Bay. (Sand is found in deeply incised bays and sheltered areas.) Wide sand beach north of Weymouth Harbour entrance.

BACKSHORE Hard limestone cliffs from Durlston to St. Alban’s Head. Soft, unstable cliffs of clays, shales, limestone and chalk to the west. Marshland at Lodmoor in Weymouth Bay. Limestone cliffs at Portland Bill.

EROSION Widespread. The rate varies greatly depending upon location. Generally fairly rapid, due to a combination of weathering, slippage and wave undercutting. The frontage affected by cliff erosion is generally undeveloped. However there is cliff instability at Nothe Point, Weymouth and cliff erosion northeast of Lodmoor.

ACCRETION Sand build-up at south end of Weymouth Bay. Pebble beaches predominantly within deeply incised embayments.

AREAS OF FLOOD RISK Lodmoor, in Weymouth Bay.

LITTORAL PROCESSES Low and intermittent eastward drift. Wave action and variations in lithology produce differential rates of cliff erosion, forming deeply incised bays and stacks. Coastline has little development and coastal problems are minor. Beaches on the developed frontage of Weymouth appear to be stable. However the shingle beach at Lodmoor to the north of Weymouth is sometimes overtopped, possibly due to the interaction of waves with the seawall to the landward of the beach. Cliff instability causes some problems in Weymouth Bay but those problems do not seem to be due to man’s interference with littoral processes. Tidal currents have little impact on the coastline from Osmington to Durlston Head being relatively weak close to the shoreline. Anticlockwise current induced circulation of sand in Weymouth Bay is probably the mechanism by which sand has accumulated on the Weymouth frontage.
CELL 6 Portland Bill to Land's End

SUB-CELL 6a Portland Bill to Dawlish Warren

COASTAL AUTHORITIES

District Councils: Weymouth and Portland, West Dorset, East Devon, Teignbridge

County Councils: Dorset, Devon

NRA Regions: Wessex, South West

GENERAL

Largely undeveloped coastline with short urban frontages at mouths of rivers. With the notable exception of Chesil Beach the urban frontages have little interaction because of low, intermittent littoral drift.

BEACHES

Predominantly shingle with sand at low tide. Lyme Regis and Exmouth have substantial sand beaches.

BACKSHORE

Chesil Beach backed by lagoon, with sand cliffs at western end. Unstable clay, marl, sand, lias and chalk cliffs extend from West Bay to Exmouth.

EROSION

Cliffs subject to rapid erosion and slippage, from West Bay to Exmouth. Cliff instability on the urban frontage of Lyme Regis. Dune erosion at Dawlish Warren.

ACCRETION

Sand and shingle build-up at Lyme Regis due to trapping effect of harbour and consequent downdrift erosion to the east. Sand accretion at mouth of the river Exe, received from Dawlish Warren via estuary mouth bars.

AREAS OF FLOOD RISK

Chiswell, West Bay, Seaton, Sidmouth and Budleigh Salterton are on alluvial plains and are at some risk of flooding.

LITTORAL PROCESSES

Littoral drift is variable in direction but generally eastward. Transport is low and intermittent. Chesil Beach is receding slowly and is now prone to overtopping. It appears to have no contemporary supply of material. Wave action obviously dominates the evolution of the beach.

To the west of Chesil the coastline consists of soft, easily erodible cliffs. Waves erode these cliffs and transport fines seaward in suspension within rip currents. This process is particularly marked east of Lyme Regis where the soft, sandy/clay cliffs are prone to slippage on a large scale. Beaches are thus relatively small.

There is little interaction between urban frontages because of the long stretches of eroding cliffs between.

There is considerable interaction at mouth of the Exe estuary. Sand eroded from Dawlish Warren is transported by waves and tidal currents across the bar at the estuary mouth to accrete at Exmouth.
Sub-cell 6b Dawlish Warren to Start Point

Start Point

Dawlish Warren

Exeter

Torbay

Berry Head

Brixham

Dartmouth

Teignmouth

Babbacombe Bay

Torquay

Seaton

Sidmouth

Beer Head

Budleigh Salterton

Lyme Regis

West Bay

Lyme Bay

Chiswell

Portland Bill

St. Alban's Head

Durlston Head

Osmington

Kimmeridge

Isle of Purbeck

Swanage

Studland Bay

Pool

Scale

0 10 Km
Portland Bill to Land's End

Dawlish Warren to Start Point

Teignbridge, Torbay, South Hams

Devon

South West

Strongly indented partly developed coastline with a common easterly wave aspect and broadly similar coastal morphology.

Sand beaches predominate from Dawlish Warren to Tor Bay. Shingle beaches predominate from Brixham to Start Point.

Sandstone cliffs, with resistant limestones forming headlands (e.g. margins of Tor Bay). Unstable shale cliffs in St Mary's Bay just south of Berry Head. Resistant shales, slates and grits extend from there south to Start Point.

The sandstone cliffs to the north of Torquay provide beach sand. Barrier shingle beach in Start Bay prone to strong alongshore and onshore/offshore movement, causing beach drawdown at Beesands and Torcross villages.

Sand accretion in Tor Bay.

Wave overtopping on Dawlish seafront and in Start Bay.

Predominantly northward weak drift but the extensive beaches are subject to strong seasonal changes in drift direction. Wave action dominates coastal processes, with onshore/offshore movement being as important as alongshore movement in regulating beach changes in certain areas (e.g. Torcross). In sand filled estuary mouths both waves and tidal currents interact to produce very complex and largely unpredictable patterns of movement (e.g. Teignmouth). Due to indented nature of coast there is little interaction between adjacent frontages and the coast is only "loosely" linked. However there are certainly major drift movements within the individual bays eg. Babbacombe Bay, Torbay and Start Bay.
CELL 6 Portland Bill to Land's End
SUB-CELL 6c Start Point to Rame Head

COASTAL AUTHORITIES
District Councils: South Hams, Plymouth, Caradon
County Councils: Devon, Cornwall
NRA Regions: South West

GENERAL
A rugged unspoilt cliffed coastline intersected by drowned river valleys. Coastline exposed to some Atlantic wave action.

BEACHES
Predominantly sand beaches.

BACKSHORE
Predominantly slate cliffs extending seawards as rock reefs. Some local cliff instability.

EROSION
Shale/slate cliff subject to weathering and erosion in Hope Cove, Bigbury-on-Sea and Challaborough Bay, all of which are situated in Bigbury Bay.

ACCRETION
Sand accretion at mouths of Avon and Erme.

AREAS OF FLOOD RISK
No flood risk on open coasts.

LITTORAL PROCESSES
Potential drift is eastward but the transport rate is insignificant. Wave action includes an element of Atlantic swell which helps to produce extensive sand beaches in estuary mouths (rivers Avon and Erme).
Coastline is strongly dissected by estuary mouths, promontories etc.
Very little interaction between adjacent stretches of coast.
CELL 6
Portland Bill to Land's End

SUB-CELL 6d
Rame Head to Lizard Point

COASTAL AUTHORITIES

District Councils: Caradon, Restormel, Carrick, Kerrier
County Councils: Cornwall
NRA Regions: South West

GENERAL
A rugged undeveloped clifffed coastline intersected by drowned river valleys which separate the frontage into independent units. The southeasterly exposure, and similar morphology makes it sensible to consider this as one single coastal cell.

BEACHES
Sand or pebble beaches. Generally contained within individual coves.

BACKSHORE
High slate cliffs with extensive promontories and extending seawards as rock reefs.

EROSION
Erosion of boulder clay overburden at west end of Whitesand Bay. Cliff erosion at Seaton/Downdeny and Millendreath (between Whitesand Bay and Looe). Cliff erosion at Veryan Bay.

ACCRETION
Major beaches of gritty china clay residual sand in Carlyon Bay and at Par Sands, within St. Austell Bay.

AREAS OF FLOOD RISK
No flood risk on open coast.

LITTORAL PROCESSES
Virtually no nett drift. Wave action generated in the English Channel is an important process which produces local cliff erosion. There is also some swell penetrating to the eastern end of this frontage, producing extensive sand beaches in Whitesand Bay.

Tidal currents may help distribute china clay waste within St Austell Bay, but otherwise currents play no significant role in coastal processes.

The frontage has been treated as one cell because of similar wave exposure and geomorphology, but in practice there is very little interdependence between adjacent frontages.
CELL 6
Portland Bill to Land's End

SUB-CELL 6e
Lizard Point to Land's End

COASTAL
AUTHORITIES

District Councils: Kerrier, Penwith
County Councils: Cornwall
NRA Regions: South West

GENERAL
The rocky cliffed peninsulas of the Lizard and Penwith shelter the lower lying land in Mount's Bay. Urban development is concentrated in the west part of the Bay.

BEACHES
Pocket sand or shingle beaches along the cliffed frontage. Shingle beach at Loe Bar. Wide sand flats in west part of Mount's Bay.

BACKSHORE
Cliffs of resistant schists with igneous intrusions on the Lizard peninsula. Slate cliffs covered by boulder clay in Mount's Bay. Granite cliffs on the Penwith peninsula.

EROSION
Cliff and beach erosion in Mount's Bay, especially east of Marazion. Cliff erosion at Porthleven. Beach erosion at Perran Sands (between Marazion and Porthleven).

ACCRETION
Little evidence of recent accretion though one would expect siltation to be taking place in the lee of St Michael's Mount, in Mount's Bay.

AREAS OF FLOOD RISK
Low lying land at Marazion, Long Rock and at Penzance (all in Mount's Bay).

LITTORAL PROCESSES
Very low eastward drift in Mount's Bay. Seasonal alongshore movements along Loe Bar but no apparent nett drift. Wave action is dominant and can cause significant onshore/offshore beach movements but little net alongshore movement. The role of tidal currents is poorly understood - one would expect active siltation to be taking place in Mount's Bay.

The bay forms a natural coastal cell.
CELL 7

SUB-CELL 7a

COASTAL AUTHORITIES

District Councils: Penwith, Kerrier, Carrick, Restormel, North Cornwall

County Councils: Cornwall

NRA Regions: South West

GENERAL

A rugged, largely undeveloped, cliffed coastline with extensive stretches of sand separated by rocky foreshore. The major urban areas are found at these beaches (e.g. St Ives, Perranporth and Newquay).

BEACHES

Wide, gently shoaling sands backed by dunes. Extensive stretches of rocky foreshore.

BACKSHORE

Slate cliffs forming an irregular coast with headlands. Rocks extending seawards as reefs and stacks.

EROSION

Dune erosion widespread (e.g. Whitesand Bay, St. Ives Bay, Porthtowan, Perranporth). Cliff erosion at Newquay's Towan beach.

ACCRETION

No known present day accretion.

AREAS OF FLOOD RISK

Portreath and Perranporth.

LITTORAL PROCESSES

The coastline is exposed to Atlantic swell and the active beach zone extends to a considerable depth. Waves cause strong seasonal onshore/offshore movements. There is no evidence of any significant northward drift i.e. no areas of accretion linked to littoral transport and no areas of downdrift erosion.

The role of tidal currents is not well understood, but is probably secondary to wave induced currents.

Little interaction between adjoining stretches of coast.
CELL 7
SUB-CELL 7b

COASTAL AUTHORITIES

District Councils: North Cornwall, Torridge
County Councils: Cornwall, Devon
NRA Regions: South West

GENERAL
A rugged undeveloped cliffed coast with fine sand beaches separated by long stretches of boulder-strewn beaches.

BEACHES
Sand beaches fringed by rock reefs. Some beaches backed by dunes.

BACKSHORE
Slate cliffs extend north to Boscastle. Shale and sandstone cliffs extend from Boscastle to Hartland Point.

EROSION
Erosion of boulder clay overburden at the southern end of Bude Bay. Dune erosion at Polzeath in Padstow Bay and also in Bude Bay.

ACCRETION
No steady accretion but strong seasonal variations in beach level. Large areas of intertidal sand in the Camel estuary (e.g. near Padstow).

AREAS OF FLOOD RISK
No flood risk on open coast.

LITTORAL PROCESSES
Very low northward drift. The coastline is exposed to Atlantic swell and the active beach zone extends to a considerable depth. Waves cause strong seasonal onshore/offshore movements. The role of tidal currents is not well understood, but is probably secondary to wave induced currents.

Little interaction between stretches of cliffed coast which separate the major sand beaches.
CELL 7

SUB-CELL 7C

Hartland Point to Morte Point

COASTAL AUTHORITIES

District Councils: Torridge, North Devon

County Councils: Devon

NRA Regions: South West

GENERAL

The coastline in Barnstable Bay forms a distinct cell but the smaller bays of Croyde and Morte, separated by large promontories, can be considered as independent units within this sub-cell.

BEACHES

Pebble and boulder strewn beaches from Hartland Point to Westward Ho! Pebble ridge of Westward Ho! encloses saltmarsh. Massive sand dune system of Braunton Burrows encloses saltmarsh on the estuary’s north shore. Wide sand beaches in Croyde Bay and Morte Bay.

BACKSHORE

Cliffs of sandstones and shales form the north facing coast to Westward Ho! and the westward projecting headlands separating Croyde and Morte bays. Dunes at bay heads.

EROSION

Rapid recession of the pebble ridge at Westward Ho! Sand spit erosion at Crow Point at the southern end of Braunton Burrows, which may be attributable to sand and gravel extraction. Dune erosion at Putsborough and Woolacombe (in Morte Bay).

ACCRETION

Siltation in the Taw-Torridge estuary.

AREAS OF FLOOD RISK

No flood risk on open coast.

LITTORAL PROCESSES

Low eastward drift from Hartland Point to Westward Ho! Elsewhere there is little net drift. Waves dominate the movement of pebbles on the upper beach, which are found from Hartland to Westward Ho!

Tidal currents bring fine sediments into Barnstable Bay out of the Bristol Channel (via a large anticlockwise eddy on the ebb tide).

Sand circulation in the mouth of the Taw-Torridge estuary is very complex and not well understood, but both waves and tidal currents are important mechanisms.

Waves produce onshore/offshore sand movement on the west facing beaches. Despite this movement the headlands of Baggy Point and Morte Point project sufficiently far seaward to make Morte Bay an independent unit.
CELL 7

Sub-Cell 7d

Coastal Authorities

District Councils: North Devon, West Somerset, Sedgemoor, Woodspring
County Councils: Devon, Somerset, Avon
NRA Regions: South West, Wessex

General

A contrasting coastline with hard cliffs from Morte Point to Minehead, softer cliffs east to Hinkley Point and low lying land beyond to Sand Bay. The connecting factor is continuity of eastward drift. Coast protection works can cause serious downdrift erosion, particularly east of Minehead.

Beaches

Shingle or boulder strewn beaches to Porlock Bay. Shingle and sand beaches over flat rocky lower foreshore east to Stolford, east of Hinkley Point. Muddy foreshore to river Parrett. Extensive sand beaches with mudflats at low water northwards from Burnham-on-Sea to Sand Bay.

Backshore

Relatively hard sandstone and shale cliffs to Minehead. Softer cliffs of limestones, shales and clays from Minehead to east of Hinkley Point. Low lying alluvial clay land stretches northwards from east of Hinkley Point, intersected by limestone headlands at Brean, Weston and Sand Bay. Dunes at bay heads.

Erosion

Cliff erosion from Minehead to Hinkley Point (notably Blue Anchor Bay and Watchet). Dune erosion at Brean.

Accretion

Mud accretion in Bridgwater Bay.

Areas of Flood Risk

Porlock, Minehead, Watchet, Brean, Uphill, Weston-Super-Mare.

Littoral Processes

Low, strongly unidirectional, eastward drift (sand and shingle) extending to Bridgwater Bay. Lower foreshores relatively stable between Morte Point and Hinkley Point.

Storm surges at high spring tides can produce overtopping at Porlock, Minehead, Watchet, Brean, Uphill, Weston-Super-Mare and Sand Bay as well as low lying coast east of Hinkley Point.

The coastal regime in Bridgwater Bay itself is affected by tidal currents. The upper beach however is dominated by wave action. Windblown sand also an important factor on west facing beaches from Burnham-on-Sea to the north end of Sand Bay. The headlands at Brean, Weston and Sand Bay make the intervening bays independent units.
CELL 7

Land's End to The Severn

SUB-CELL 7e

Sand Bay to Sharpness

COASTAL AUTHORITIES

District Councils: Woodspring, Bristol, Northavon, Stroud

County Councils: Avon, Gloucester

NRA Regions: Wessex, Severn Trent

GENERAL

Most of the coastline lies below the high water of spring tides and is thus very vulnerable to flooding.

BEACHES

Mainly mudflats and saltmarshes.

BACKSHORE

Alluvial coastline with higher ground of easily erodible sandstones and limestones between Clevedon and Portishead and again at Aust (Severn Bridge).

EROSION

Serious erosion tends to occur when high tidal levels coincide with storm activity. Locally generated waves can cause considerable damage to flood banks.

ACCRETION

No known areas of significant accretion.

AREAS OF FLOOD RISK

Most of the coastline is potentially at risk.

LITTORAL PROCESSES

No appreciable drift. Wave heights are relatively modest, being generated within the estuary and having very little penetration of Atlantic swell. High tide levels combined with surges lead to flooding.

Tidal currents dominate movements in the estuary but other than affecting approaches to harbours, appear to have little coastal impact.
CELL 8
The Severn to St. David's Head

SUB-CELL 8a
Wellhouse to Lavernock Point

COASTAL AUTHORITIES

District Councils: Forest of Dean, Monmouth, Newport, Cardiff, Vale of Glamorgan
County Councils: Gloucester, Gwent, South Glamorgan
NRA Regions: Severn Trent, Wales

GENERAL
The low lying shoreline from Wellhouse opposite Sharpness, to the river Rhymney is well sheltered from wave activity but is nevertheless very vulnerable to flooding.

BEACHES
Predominantly mudflats and saltmarsh. A boulder strewn foreshore from Penarth to Lavernock Point.

BACKSHORE
Alluvial land upstream of Penarth forms low lying agricultural land. Limestone and marl cliffs extend between Penarth and Lavernock Point. These weather rapidly.

EROSION
No serious coast erosion problems. Short stretches of low eroding clay cliff in the vicinity of Magor. Some beach lowering at Penarth.

ACCRETION
No appreciable accretion.

AREAS OF FLOOD RISK
Much of the reclaimed land between Chepstow and Cardiff is protected by flood banks and is at risk during very high tides. Some vulnerable development on Wentlooge levels. Coastal development between Ely and Rhymney rivers.

LITTORAL PROCESSES
A weak drift of pebbles northwards from Lavernock Point to Penarth. No noticeable drift elsewhere. Tidal currents control the development of sand banks within the estuary and in turn these banks determine the size of waves which can be generated. High tides and surges coupled with locally generated waves make the shoreline prone to flooding.
CELL 8
The Severn to St. David's Head

SUB-CELL 8b
Lavemock Point to Worms Head

COASTAL AUTHORITIES

District Councils: Vale of Glamorgan, Ogwr, Port Talbot, Neath, Swansea
County Councils: South Glamorgan, Mid Glamorgan, West Glamorgan
NRA Regions: Wales

GENERAL
The low lying coastline of Swansea Bay, with the Gower to the west and the cliffs of Nash Point to Lavemock to the east, forms an obvious coastal cell.

BEACHES
Rocky foreshore with sands and shingle storm beaches between Lavemock Point and Nash Point. Wider sand beaches on the coast from Nash to Ogmore. Extensive sand beaches in the eastern half of Swansea Bay with sandy/silty intertidal flats to the west. Pocket shingle beaches in the eastern part of the Gower form a contrast with major sand beaches in the western part.

BACKSHORE
Limestone or marl cliffs extend west from Lavernock round Nash and then north to Ogmore. Extensive dune systems between Ogmore and Swansea, interspersed in the Porthcawl area with low rocky cliffs. Limestones and shales form the cliffs of the Gower peninsula.

EROSION
Cliff erosion from Barry to Southerndown. Beach erosion in many of the small bays in the Porthcawl area. Dune recession at Kenfig. Beach erosion at Margam and Port Talbot. Large scale navigational dredging at the approaches to Port Talbot and backshore despoliation at Margam may have exacerbated erosion processes in Swansea Bay.

ACCRETION
Shingle accretion west of Barry. Accretion in river Neath estuary.

AREAS OF FLOOD RISK
Newton (south of Porthcawl). Low lying land between Neath and Swansea.

LITTORAL PROCESSES
Littoral drift is low to moderate but very variable in direction within embayments but predominantly eastwards on "open" stretches of coast. Major interruptions to drift from the dredging of Port Talbot Harbour and the rivers Neath and Tawe navigation channels.

Beach erosion occurs at undefended south westerly coasts under severe wave action at high tide levels.

Tidal circulation may result in an interchange of sediment between the beaches and the nearshore sea bed. However there is little evidence that this mechanism is significant in controlling beach regimes.
CELL 8

The Severn to St. David's Head

SUB-CELL 8c

Worms Head to St. Govan's Head.

COASTAL AUTHORITIES

District Councils: Swansea, Lliw Valley, Llanelli, Carmarthen, South Pembrokeshire

County Councils: West Glamorgan, Dyfed

NRA Regions: Wales

GENERAL

Carmarthen Bay forms a readily identifiable coastal cell, being fringed by the Gower peninsula to the east and the Tenby peninsula to the west.

BEACHES

Extensive sand beaches and dune systems are widespread with saltmarshes bordering the estuaries. Sand and pebble beaches are found at base of cliffs and across valley mouths in the western part of Carmarthen Bay.

BACKSHORE

Limestone cliffs on the Gower peninsula. Sand dunes and salt marshes dominate the low lying shoreline in Carmarthen Bay. Sandstones, shales and limestones extend from Amroth to St Govan's Head. Resistant limestones form high cliffs and stacks on the south part of the Tenby peninsula.

EROSION

Dune erosion at Pendine and Pembrey. Local erosion at Broughton, (north of Burry Holms), Ferryside, and Ginst Point (at the east end of Pendine Sands). Beach erosion at Amroth.

ACCRETION

Local accretion at Burry Port and at Llanstephan.

AREAS OF FLOOD RISK

Low lying land bordering the Loughor and the Taf/Tywi/Gwendraeth estuaries.

LITTORAL PROCESSES

Littoral drift is very variable, with low, generally eastward, drift along cliffed stretches of coast and strong circulation of sediments in the Loughor and the Taf/Tywi/Gwendraeth river estuaries. Erosion on open coasts is due to combination of strong wave exposure and high tides.
CELL 8
The Sevem to St. David's Head

SUB-CELL 8d
St. Govan's Head to St. David's Head

COASTAL
AUTHORITIES

District Councils: South Pembrokeshire, Preseli Pembrokeshire
County Councils: Dyfed
NRA Regions: Wales

GENERAL
This headland and bay coast is dissected by the vast natural harbour of Milford Haven. Division into smaller littoral cells is possible. The coast is generally unpopulated and lacking in coastal defences.

BEACHES
Wide sand beaches in bays and in coves. There are also long stretches of rocky shoreline with pebble beaches derived from erosion of cliffs and of glacial deposits.

BACKSHORE
The geology is very complicated but the cliffs are predominantly limestones and sandstones from St. Govan's Head to St. Brides Bay. St. Brides Bay is cut in relatively soft shales and sandstones. The rugged cliffs from St. Brides Bay to St. David's Head contain intrusions of igneous rock.

EROSION
Localised and on a small scale (e.g. cliff erosion at Broadhaven at the south end of St Brides Bay, and in Whitesand Bay.

ACCRETION
No known areas of present day accretion.

AREAS OF FLOOD RISK
Valley behind Newgale beach.

LITTORAL PROCESSES
Littoral drift is insignificant. Wave action produces strong onshore/offshore movements, which are strong enough to sometimes reveal fossilised trees at low tide in St Brides Bay. Tidal currents do not play an important role on this very strongly indented coastline. There is also very little interdependence between beaches, with the exception of the long frontage in St. Brides Bay in which littoral movement can take place freely.
CELL 9 St. David's Head to Bardsey Sound

SUB-CELL 9a St. David's Head to Afon Glaslyn

COASTAL AUTHORITIES

District Councils: Preseli Pembrokeshire, Ceredigion, Meirionnydd

County Councils: Dyfed, Gwynedd

NRA Regions: Wales

GENERAL The whole of the long sparsely populated coastline of Cardigan Bay should ideally be treated as one unit. Erosion of cliffs of glacial drift in the south feeds beaches in the north part of Cardigan Bay.

BEACHES Sandy coves on the rugged coast from St. David's Head to New Quay. More extensive sand and pebble beaches from New Quay to Borth. Northern end of Cardigan has predominantly sandy beaches, often surmounted by shingle ridges.

BACKSHORE Predominantly cliffed coast. (Cliffs of glacial drift at locations between New Quay and Barmouth.) Sand/shingle spits, dunes and saltmarshes at estuary mouths.

ACCRETION Sand accretion at Aberdyfi, Barmouth and Morfa Halech.

AREAS OF FLOOD RISK Potential flood risk due to spit recession south of Aberystwyth. Aberdyfi to Tywyn. Llanaber to Dyffryn Arudwy.

LITTORAL PROCESSES There is a moderate northward drift on open stretches of coast. Some drift reversal at estuary mouths.

Wave action does not cause serious problems on the rugged coast south of New Quay. However the softer coastline to the north is vulnerable to wave induced erosion and has broadly common downdrift erosion problems. Coastal defences are few but have strong knock-on effects downdrift.

Tidal currents run parallel to the coast and do not independently affect coastal processes (they transport material put in suspension by waves).
Sub-cell 9b Afon Glaslyn to Bardsey Sound
CELL 9 St David's Head to Bardsey Sound

SUB-CELL 9b Afon Glaslyn to Bardsey Sound

COASTAL AUTHORITIES

District Councils: Dwyfor

County Councils: Gwynedd

NRA Regions: Wales

GENERAL

The frontage is on the south face of Lleyn peninsula and comprises hard igneous outcrops linked by glacial drift cliffs and sand dune systems. Area is lightly developed and best treated as a single unit due to common nature of problems.

BEACHES

Predominantly sandy. Shingle beaches between Criccieth and river Dwyfor to the west. Shingle spits at Pwllheli harbour entrance.

BACKSHORE

Dune systems at Morfa Bychan east of Criccieth, Abererch east of Pwllheli, also west of Pwllheli and at Abersoch. Glacial drift cliffs in Criccieth area, Llanbedrog area and bays between St Tudwals to the south of Abersoch, and Bardsey.

EROSION

Widespread clay cliff and sand dune erosion. Clay cliff slippage at Criccieth. Sand/clay cliff erosion from east of Criccieth Castle to Pen-y-chain. Sand dune erosion west to Pwllheli harbour, and at various points from west of Pwllheli to south of Abersoch. Clay cliff erosion between Llanbedrog and Aberdaron.

ACCRETION

Sand accretion on the Pwllheli promenade and shingle spit accretion on both sides of the harbour mouth. Sand accretion in Marchros area at south end of Abersoch Bay.

AREAS OF FLOOD RISK

Various stretches of low lying land from Glanllynau, west of Criccieth, to east of Llanbedrog. Breach just west of Pwllheli would threaten part of town.

LITTORAL PROCESSES

There is negligible or very low eastward drift from Aberdaron to Llanbedrog. Moderate eastward drift from Llanbedrog to the river Glaslyn. The southern shoreline of the Lleyn peninsula is very susceptible to erosion by wave action and dune blowouts are accelerated by severe winds. Erosion exacerbated by holidaymakers trampling dunes. Tidal currents do not have a significant impact other than removing fines from cliff erosion and also producing siltation in Pwllheli harbour.

Coastal defences east of Llanbedrog are likely to have strong 'knock-on' effect due to one directional drift.
CELL 10
Bardsey Sound to Great Orme

SUB-CELL 10a
Bardsey Sound to Menai Strait

COASTAL AUTHORITIES

District Councils:
Dwyfor, Arfon

County Councils:
Gwynedd

NRA Regions:
Wales

GENERAL

The north face of Lleyn peninsula is almost entirely rural and has a rugged grandeur. The natural break between the mainland and Anglesey forms an appropriate sub-cell boundary.

BEACHES

Generally narrow sand and shingle foreshore but with substantial sand beaches in major embayments (e.g. Porth Dinllaen and Porth Nefyn, both near Nefyn). Foreshore width increases near the entrance to Menai Strait and there is a large sand and shingle spit protecting saltmarsh at Morfa Dinlle (north of Dinas Dinlle).

BACKSHORE

The southern part of the peninsula formed of hard Igneous rock with high cliffs of glacial drift lining embayments. North of Trefor a lower glacial drift backshore gives way to a shingle ridge protecting low lying land at Dinas Dinlle. At Dinas Dinlle there is a short length of higher glacial drift cliff again.

EROSION

Cliff erosion problems at Nefyn, Trefor and Clynnog-fawr. Erosion of glacial drift and shingle banks at Dinas Dinlle.

ACCRETION

Sand dunes at north end of Dinas Dinlle.

AREAS OF FLOOD RISK

Low lying land north and south of Dinas Dinlle.

LITTORAL PROCESSES

Low northeastward drift. The sand bays between the tip of the peninsula and Caregg Ddu experience seasonal onshore/offshore movement. Here there is little interdependence between adjacent bays.

To the northeast of Careg Ddu the coastline is less segmented and cliff erosion provides some feed of beach material to be transported towards Menai Strait. However, much of the material eroded from the cliffs consists of fines and is lost offshore. Thus despite this feed, the spit at Dinas Dinlle is suffering from a deficiency in supply of fresh material.
CELL 10

SUB-CELL 10b

COASTAL AUTHORITIES

District Councils: Ynys Môn (Isle of Anglesey)
County Councils: Gwynedd
NRA Regions: Wales

GENERAL

Rocky coastline of Anglesey has little interaction with the mainland coast with the possible exception of sand banks at the west and east ends of Menai Strait.

BEACHES

Predominantly sandy.

BACKSHORE

Hard pre-Cambrian rocks form an indented coastline which is resistant to erosion. The southern part of Anglesey is Carboniferous, limestones mostly where exposed on the coast. Where there is a cover of glacial boulder clay it is rapidly eroded. In many areas small dune systems back the bays.

EROSION

Local coast protection works in areas of clay cliff erosion. There do not appear to be any extensive areas of erosion. Erosion tends to occur more on the west coast than the north or east. Erosion in Cymyrn Bay, for example, is probably related to the exposure to predominant south westerly storms. The shoreline of Menai Strait is generally stable with the exception of low boulder clay cliffs near Beaumaris.

ACCRETION

Newborough Warren, in the southwest corner of the Island.

AREAS OF FLOOD RISK

Low lying areas in the south west corner of the Island (eg. at Malltreath Marsh and in the Menai Strait, near Newborough Warren).

LITTORAL PROCESSES

Littoral drift is very low and variable in direction. Most beaches within embayments or between headlands can probably be treated individually as far as coastal defence works are concerned.

Little is known about coastal processes. However, because of the indented nature of the coast, tidal currents probably play a minor role (possibly with the exception of helping siltation take place between Holy Island and "mainland" Anglesey.)

Wave action at high tides causes beach lowering and attack on dunes at heads of indentations, and of low glacial cliffs, particularly on west facing coasts.
CELL 10

Bardsey Sound to Great Orme.

SUB-CELL 10c

Fort Belan to Great Orme.

COASTAL AUTHORITIES

District Councils: Arfon, Aberconwy

County Councils: Gwynedd

NRA Regions: Wales

GENERAL

The mainland coast has little interaction between it and Anglesey due to the rapid currents through the Menai Strait.

BEACHES

Sand beaches backed by salt marsh at the west end of Menai Strait. Sands and muds east of Bangor form the intertidal flats of Lavan Sands and Conwy Sands (in Conwy Bay). Some shingle beaches fringe Lavan Sands.

BACKSHORE

Low lying land from Fort Belan to Caernarfon. Higher ground from Caernarfon to Bangor. Low lying land bordering Lavan Sands and Conwy Sands, but with rocky headlands to east of Llanfairfechan and clay cliffs east of Penmaenmawr. (Part of the foreshore at Penmaenmawr is now reclaimed for the A55 trunk road.)

EROSION

ACCRETION

Accretion probably taking place on Lavan Sands and Conwy Sands.

AREAS OF FLOOD RISK

Low lying land west of Caernarfon and east of Bangor.

LITTORAL PROCESSES

Littoral drift is low and variable in direction. Waves from the north cause some bank erosion despite the width of the intertidal flats at Lavan Sands and Conwy Sands. The effects of tidal currents within Conwy Bay are poorly understood. It is possible that sand may be transported in suspension from west to east around the Great Orme.

The mainland coast from Fort Belan to the Great Orme can be treated as a single unit for the purpose of management. However there appears to be little interaction between the coast west of Caernarfon and that bordering Lavan Sands and Conwy Bay.
CELL 11
Great Orme to Solway Firth

SUB-CELL 11a
Great Orme to River Mersey

COASTAL AUTHORITIES
District Councils: Aberconwy, Colwyn, Rhuddlan, Delyn, Wirral
County Councils: Gwynedd, Clwyd, Merseyside
NRA Regions: Wales, North West

GENERAL
With the exception of the promontory of Little Orme (east of Great Orme) and of the mouth of the river Clwyd, the coast has few natural barriers to the nett eastward drift. Downdrift problems occur widely and hence this long frontage (most of which is protected) should be treated as a strongly dependent unit.

BEACHES
Predominantly sand. There are also shingle beaches in Llandudno Bay and locally east of Little Orme. There are extensive shingle beaches between Llandulas and Towyn (east of Abergale).

BACKSHORE
Limestone promontories at Great Orme and Little Orme and at Pen-tan-maen to the east. High ground to east of Little Orme consists mainly of clay cliffs which give way to low alluvial plain east of Llandulas (low land extends to the Dee). Stretches of low lying, former marshland can also be found over the frontage from the Dee to the Mersey.

EROSION
Beach erosion is widespread as most of the coast is a "soft" one. Little erosion of the backshore due to extensive protection works.

ACCRETION
Siltation at the entrance to the Clwyd. Siltation in the Dee and sand accretion at the Point of Ayr and on East Hoyle Bank. Redistribution of sediments in outer Mersey causing areas of accretion adjacent to navigation training walls.

AREAS OF FLOOD RISK
Llandudno and Penryhn Bay to the east. Abergale to river Clwyd. Rhyl to Point of Ayr. Dee estuary.

LITTORAL PROCESSES
Moderate to high eastward rate of sand transport. Low eastward rate of shingle transport. Wave driven eastward drift is not very effectively controlled by groyning because of the very large foreshore width. Residual currents in Liverpool Bay provide a mechanism for transporting sand towards the Dee and Mersey. Little evidence of such onshore movement west of the Dee. The open coast of the Wirral benefits from this offshore supply in very sheltered areas (e.g. landward of East Hoyle Bank).

The cross-shore distribution of sand transport is complex and any major coastal works necessitate complex studies to optimise design and to minimise downcoast erosion problems.
CELL 11 Great Orme to Solway Firth
SUB-CELL 11b River Mersey to Fleetwood

COASTAL AUTHORITIES
District Councils: Sefton, West Lancashire, Fylde, Blackpool, Wyre
County Councils: Merseyside, Lancashire
NRA Regions: North West

GENERAL A predominantly low lying eroding "soft" coast which, despite its considerable length, should be treated as a single coastal unit.

BEACHES Wide sand beaches on open stretches of coast. Sand banks, mud flats and saltmarshes in the estuary of the Ribble.

BACKSHORE Extensive sand dune systems from Crosby to Southport. Salt marshes in the Ribble estuary. Small sand dune area between Lytham and Blackpool (much of the backshore has urban development). Higher areas of ground (e.g. at Blackpool) consist of clay cliffs but generally highly defended. Low lying land from Cleveleys to Fleetwood all of which has also been defended.

EROSION Beach/dune erosion of the Formby peninsula and beach erosion from Blackpool to Cleveleys.

ACCRETION Mouth of the Ribble has extensive sand banks and salt marsh development also occurs on the estuary margins.

AREAS OF FLOOD RISK Entrance to the river Alt to the south of Formby, Southport to Hesketh, Cleveleys to Fleetwood.

LITTORAL PROCESSES High rate of northerly sand transport between the Mersey and the Ribble with somewhat lower rate of northward transport between the Ribble and the Wyre. Wave induced northward drift on open coasts. Onshore movement of fine sand and silts due to residual currents is particularly important in estuary mouths. Developed frontages cannot retreat and are subject to widespread beach erosion. (Blackpool in particular).

Liverpool Bay has experienced major changes due to redistribution of sediments following canalization of outer Mersey. These changes are very complex and any large scale works require major studies to assess impacts.
Sub-cell 11c Fleetwood to Walney Island
Morecambe Bay has vast expanses of intertidal sand flats, with areas of saltmarsh at the head of the Bay and in the Lune estuary to the southward. It is generally a sediment sink but the low lying land bordering it is prone to flooding.

Extensive mud flats in the Lune estuary. Wide intertidal sand flats within Morecambe Bay.

Saltmarshes border the Lune estuary. Limestone promontories occur in parts of Morecambe Bay (e.g. Heysham to Morecambe). There are also areas of glacial drift forming low cliffs (e.g. Sunderland Point at the entrance to the Lune, Walney Island). Saltmarshes extend from north of Morecambe around the central margin of the Bay. The western margin of the Bay has low clay cliffs separated by stretches of low lying land. Erosion of glacial material there, forms mounds of pebbles, called scars, on the upper foreshore.

Some clay cliff erosion in local areas of higher ground (e.g. Sunderland Point in Lune estuary and on west shore of Morecambe Bay. Also on west face of Walney Island).

The Bay acts as a sink for sands and silts.

Most of the shore of the Lune estuary is at risk. Much of the frontage in Morecambe Bay is also at flood risk. (Morecambe urban frontage prone to flooding under extreme events.)

Moderate northerly littoral drift between Sunderland Point and Heysham. Elsewhere the drift is low and generally insignificant. Movement on upper foreshores is generally weak due to low level of wave activity. Movement on intertidal banks is dominated by tidal currents although waves do have some effect, penetrating via a deep water channel called Lune Deep into Morecambe Bay. Lune Deep may focus waves onto the Heysham to Morecambe frontage. Surges significantly increase the flood risk. These are generally associated with very strong westerly or south westerly winds.

Coastal defences generally appear to have little knock-on effect and damage normally occurs due to wave action during high tides.
Sub-cell 11d Walney Island to St. Bees Head

Map of coastal regions including Walney Island, Solway Firth, Bowness, Skinburness, Silloth, Allonby, Maryport, Workington, Whitehaven, Seascale, Drigg, Ravenglass, R. Esk, Whitbeck, R. Duddon, Haverigg, Barrow, Morecambe Bay, Carnforth, Morecambe, Haysham, Sunderland Point, R. Lune, Fleetwood, Cleveleys, Blackpool. The map includes a scale indicating distances in kilometers.
CELL 11 Great Orme to Solway Firth
SUB-CELL 11d Walney Island to St. Bees Head

COASTAL AUTHORITIES
District Councils: Barrow in Furness, Copeland
County Councils: Cumbria
NRA Regions: North West

GENERAL A relatively open stretch of "soft" coastline with a number of rivers and estuaries whose mouths are infilled with sand and which therefore do little to inhibit littoral drift.

BEACHES Wide sand beaches backed in places by pebble storm ridges (e.g. Walney Island, between Whitbeck and Ravenglass and intermittently between Seascale and St. Bees).

BACKSHORE Coastline with low clay cliffs, and areas of windblown sand around estuary mouths (e.g. Haverigg Point, at Ravenglass/Drigg). Sandstone cliffs at St. Bees Head.

EROSION Erosion predominates along the cliffed stretches of coast (which are mainly of glacial origin). In particular there is erosion of the west face of Walney Head. Cliffs protecting railway line between Seascale and St. Bees are also prone to erosion.

ACCRETION Sand dune accretion at Haverigg Point, Ravenglass Estuary, Drigg Point.

AREAS OF FLOOD RISK No known areas of serious flood risk.

LITTORAL PROCESSES Weak littoral drift which is variable in direction. Some river mouths are deflected northwards and some southwards indicating little nett transport. The soft glacial cliffs and the more recent deposits of sand and shingle are subject to long term erosion by wave action. Wind action is also important, controlling the development of dune systems. Tidal currents also help to transport material into estuary mouths and the process of infilling is particularly well illustrated at Ravenglass, at the confluence of the rivers Irt, Mite and Esk.
CELL 11 Great Orme to Solway Firth

SUB-CELL 11e St. Bees Head to River Eden

COASTAL
AUTHORITIES

District Councils: Copeland, Allerdale, Carlisle

County Councils: Cumbria

NRA Regions: North West

GENERAL

St. Bees Head forms a natural drift boundary, with the shorelines to north and south having significantly different wave aspects. Drift north of St. Bees is predominantly northwards, dying out at the mouth of the Solway Firth.

BEACHES

Predominantly sand foreshores with pebble storm beaches. Sand banks and mud flats are often veneered with coal dust north of Allonby.

BACKSHORE

Sandstone cliffs extend from St. Bees Head to just north of Maryport. Sand dunes extend from Maryport north to Silloth, giving way to salt marshes in the Solway Firth.

EROSION

Widespread. Slag and shale from collieries and steelworks has previously been dumped on the shore, forming cliffs and reclaimed beaches at Whitehaven, Workington and Maryport. These are now eroding following industrial decline in this area. Downdrift erosion is also taking place due to strongly unidirectional drift, giving rise to problems to the north of the harbours of Harrington, Workington, Maryport and Silloth.

ACCRETION

Large scale sediment movement due to tidal current action gives rise to changes in the patterns of siltation/erosion in the Firth. The area is a sink for sediments and has also trapped substantial quantities of coal particles from the polluted beaches in the south.

AREAS OF
FLOOD RISK

Industrial and urban frontage at Siddick (to the north of Workington). Maryport Harbour. Much of the coastline north of Maryport Harbour to the Solway Firth is low lying but is relatively lightly developed, hence not seriously affected by flooding.

LITTORAL
PROCESSES

The predominant southwesterly fetch results in a strongly unidirectional, moderate northward wave induced littoral transport with consequent downdrift effects which are most apparent at harbour mouths. This drift reduces rapidly in strength north of Silloth.

Downdrift erosion processes are widespread and can have serious consequences. Updrift frontages are also subject to erosion particularly where harbours have been constructed on reclaimed land (e.g. Maryport).
4 Acknowledgements

We would like to thank the following individuals and organisations for their comments on draft versions of this report.

Mr J R V Ash, MAFF Regional Engineer, Cambridge

Mr D J Ayers, MAFF Regional Engineer, Taunton

Mr A B Hughes, MAFF Regional Engineer, Tunbridge Wells

Mr D Knight, MAFF Regional Engineer, York

Mr J G Sexton, MAFF Regional Engineer, Lincoln

Mr H R Payne, Water and Environmental Protection Division, Welsh Office

Mr A C Polson, Flood Defence Division, MAFF

Mr R Leafe, English Nature, Peterborough

5 Reference

Table
Table 1 Description of cell boundaries

<table>
<thead>
<tr>
<th>Cell</th>
<th>Sub-cell</th>
<th>Location</th>
<th>Boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1a</td>
<td></td>
<td>St Abb's Head</td>
<td>Drift Divide headland</td>
</tr>
<tr>
<td>1b</td>
<td></td>
<td>The Tyne</td>
<td>One way drift harbour</td>
</tr>
<tr>
<td>1c</td>
<td></td>
<td>Seaham Harbour</td>
<td>One way drift harbour</td>
</tr>
<tr>
<td>1d</td>
<td></td>
<td>Saltburn</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Flamborough Head</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td></td>
<td>Sunk Island</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>2b</td>
<td></td>
<td>Immingham</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>2c</td>
<td></td>
<td>Donna Nook</td>
<td>Drift divide and onshore feed</td>
</tr>
<tr>
<td>2d</td>
<td></td>
<td>Gibraltar Point</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Snettisham</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td></td>
<td>Snettisham</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td>Sheringham</td>
<td>Drift divide</td>
</tr>
<tr>
<td>3c</td>
<td></td>
<td>Lowestoft</td>
<td>One way drift harbour</td>
</tr>
<tr>
<td>3d</td>
<td></td>
<td>Harwich</td>
<td>One way drift harbour</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Canvey Island</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>The Thames</td>
<td>Sediment sink</td>
</tr>
<tr>
<td></td>
<td>The Thames</td>
<td>Sediment sink</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Isle of Grain</td>
<td>Sediment sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Foreland</td>
<td>Drift divide</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>Dover Harbour</td>
<td>One way drift harbour</td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td>Beachy Head</td>
<td>One way drift headland</td>
<td></td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Selsey Bill</td>
<td>Drift divide</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Selsey Bill</th>
<th>Drift divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Portsmouth Harbour</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>5c</td>
<td>Southampton (Totton)</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>5d</td>
<td>Hurst Spit</td>
<td>One way drift spit</td>
</tr>
<tr>
<td></td>
<td>The Needles</td>
<td>Drift divide</td>
</tr>
<tr>
<td>5e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5f</td>
<td>Foreland</td>
<td>One way drift headland</td>
</tr>
<tr>
<td></td>
<td>The Needles</td>
<td>Drift divide</td>
</tr>
<tr>
<td>5g</td>
<td>Hurst Spit</td>
<td>One way drift spit</td>
</tr>
<tr>
<td></td>
<td>Durlston Head</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>5</td>
<td>Portland Bill</td>
<td>Drift divide</td>
</tr>
</tbody>
</table>
Table 1 Continued

<table>
<thead>
<tr>
<th></th>
<th>Location</th>
<th>Landmark Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Portland Bill</td>
<td>Drift divide</td>
</tr>
<tr>
<td>6a</td>
<td>Dawlish Warren</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>6b</td>
<td>Start Point</td>
<td>Drift divide</td>
</tr>
<tr>
<td>6c</td>
<td>Rame Head</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>6d</td>
<td>Lizard Point</td>
<td>Drift divide</td>
</tr>
<tr>
<td>6e</td>
<td>Land’s End</td>
<td>Drift divide</td>
</tr>
<tr>
<td>7</td>
<td>Land’s End</td>
<td>Drift divide</td>
</tr>
<tr>
<td>7a</td>
<td>Trevose Head</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>7b</td>
<td>Hartland Point</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>7c</td>
<td>Morte Point</td>
<td>Drift divide</td>
</tr>
<tr>
<td>7d</td>
<td>Sand Bay</td>
<td>Drift divide</td>
</tr>
<tr>
<td>7e</td>
<td>Sharpness</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>7</td>
<td>The Severn</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>8</td>
<td>The Severn</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>8a</td>
<td>Wellhouse</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>8b</td>
<td>Lavernock Point</td>
<td>One way drift headland</td>
</tr>
<tr>
<td>8c</td>
<td>Worms Head</td>
<td>Drift divide</td>
</tr>
<tr>
<td>8d</td>
<td>St. Govan’s Head</td>
<td>Drift divide</td>
</tr>
<tr>
<td>8</td>
<td>St. David’s Head</td>
<td>Drift divide</td>
</tr>
</tbody>
</table>
Table 1 Continued

<table>
<thead>
<tr>
<th></th>
<th>Feature</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>St. David’s Head</td>
<td>Drift divide</td>
</tr>
<tr>
<td></td>
<td>Afon Glaslyn</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>9</td>
<td>Bardsey Sound</td>
<td>Drift divide</td>
</tr>
<tr>
<td>10</td>
<td>Bardsey Sound</td>
<td>Drift divide</td>
</tr>
<tr>
<td></td>
<td>Menai Strait</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>10</td>
<td>Isle of Anglesey</td>
<td>Separate coastal unit</td>
</tr>
<tr>
<td></td>
<td>Fort Belan</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>10</td>
<td>Great Orme</td>
<td>Drift divide</td>
</tr>
<tr>
<td>11</td>
<td>Great Orme</td>
<td>Drift divide</td>
</tr>
<tr>
<td></td>
<td>River Mersey</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>11</td>
<td>Fleetwood</td>
<td>One way drift spit</td>
</tr>
<tr>
<td></td>
<td>Walney Island</td>
<td>One way drift spit</td>
</tr>
<tr>
<td>11</td>
<td>St Bees Head</td>
<td>Drift divide</td>
</tr>
<tr>
<td>11</td>
<td>River Eden</td>
<td>Sediment sink</td>
</tr>
<tr>
<td>11</td>
<td>Solway Firth</td>
<td>Sediment sink</td>
</tr>
</tbody>
</table>